## S.T.E.M.

## 2016-7 <br> Part 1:



Energy and Simple
Machines


## Prior Knowledge: What is Energy? Redefining: energy, force, work and pressure



Experiment 1:

## Floating Ping Pong

 BallYou need:

- Ping Pong Ball
- Blow Dryer
- Pencil
- 4 Index Cards



## Experiment 1: <br> Floating Ping Pong Ball

## 1. Turn on your hair dryer to the highest setting and

 point it straight up.
2. Gently place the ping-pong ball within the flow of air from the hair dryer and balance it in the air stream

## What's Happening:

The ping-pong ball will fly up with the air from the hair dryer; the force of gravity (which pushes the ping-pong ball down) is equal to the force of the air (which is pushing the ping-pong ball up).

The ping-pong ball stays within the column of air coming from the hair dryer because of air pressure.


## Experiment 1: <br> Floating Ping Pong Ball <br> Fill In:

(and then use the information to make your first 4 STEM cards: pressure, force, work and energy):

The air pressure from the blow dryer helps keep the ping pong ball floating in air. $\qquad$ is the force placed on an object, like the air under the ping pong ball. ____ is a push or a pull. In this experiment force was the air pressure from the blow dryer pushing the ball up. In this experiment the air pressure released the potential energy in the ping pong ball. $\qquad$ is the ability to do work. $\qquad$ is when force is used to move an object. We know work was done because the ball was in motion.
Prior Knowledge:
What is a Pulley? Redefining: pulley

# Experiment 2: 

Chair Pulley
You need:

- Chair
- Rope
- Pail / Basket
- Pencil
- One Index Card



## Experiment 2: Chair Pulley

1. With an adult, lightly loop the rope around the back of 2 chairs.
2. Hang a small basket between the loop.
3. Take turns experimenting-pull the rope: first pull hard and then pull gently.

## Which kind of pull moved the basket farther? Why?

What's Happening:
A pulley is a simple machine that makes lifting and moving objects easier.
4. Fill out your STEM card for pulley.

Here, force (which is a push or a pull), was used in different ways to move an object, (the basket), farther and faster from one end to the other.

# S.T.E.M. 

## 2016-7

## Part 2:

## Biological Systems:

## Central Nervous,

 Circulatory and Skeletal Muscular Systems.


# What is: <br> The Central Nervous System? 

## What We Will Investigate: <br> . Nerves

. Energy
. The Brain (2 sides, some parts) . Spinal Cord


1) Watch: The Brain:

## http://kidshealth.org/en/kids/ nsmovie.html

2) Start your brain hat:

## Locate and Label:

Cerebrum, Brain Stem, Corpus Callosum, Cerebellum


## Cerebrum:

## Experiment 1:

## Posterior

1. Standing on the $\mathbf{X}$, take 10 turns and try to throw your bean bags into the bucket; wait for your partner to mark any missed attempts.
2. Repeat; this time wearing the Prism Glasses.

What happened when you put the glasses on?


## Cerebrum:

## Experiment 1:

## Posterior

Look through the information ring and the ring of optical illusions. Use what you experienced, what you read about and what you saw to fill in the activity page.

The Occipital Lobe is where the brain makes sense of what our eyes are
seeing. The information our eyes collect travels to the $\qquad$
through the $\qquad$ at the back of the eye. The Optic

Nerve sends the message from the retina to the brain. The $\qquad$ is
the eye's inner lining that converts light into nerve impulses using $\qquad$ and $\qquad$ . It is important that the brain receives the correct information
otherwise what we are seeing becomes distorted. Sometimes your
brain can be fooled! Your $\qquad$ is the part of the eye that can't
see anything. An $\qquad$
$\qquad$ is when you look at something and
think it's something else.

## Brain Stem

Watch: https://www.britannica.com/ science/brainstem

What is the difference between Voluntary and Involuntary? What do these terms have to do with the Brain and Brain Stem? Voluntary:

## Involuntary:



## Brain Stem

## Read the information ring. Then try the following experiment: <br> Knee Jerk

1. Taking turns, sit with legs crossed so that they can swing freely.
2. Your partner should take the "hammer" and hit your leg just below the knee. Then switch

## What Happened and Why?



The Knee Jerk Reflex is called a monosynaptic reflex. A is when there is only one synapse in the circuit needed to complete the reflex. It only takes about 50 milliseconds
between the tap and the start of the leg kick. The tap below the knee causes
the thigh muscle to stretch. Information is then sent to the $\qquad$ .

The Spinal Cord is connected to the $\qquad$ . The
brain stem passes signals between the cerebral cortex and the rest of

The body. Although the brain stem is the smallest part of the brain; it is
responsible for many of the $\qquad$ actions that are needed to live.
brain stem, involuntary, monosynaptic reflex, spinal cord,

## Corpus Callosum:

## Read the information ring. Then try

## Crossing the Midline:



## Place colored tape down the center of your trunk.

Elbow Tap: Stand with arms at sides. Bend and touch right elbow to left knee as you raise your leg. Stand and then touch left elbow to right knee.

Windmills: Feet spread apart and arms extended. Bend over at waist and tap right hand to left foot. Back up and then bend and tap left hand to right foot.

Backwards: Bend left knee and put foot behind right leg. Reach back around with right hand and touch left foot. Reverse and put right foot behind your left leg as you touch it with your left hand


The brain is divided into the $\qquad$ and $\qquad$
Hemisphere; and the two halves are connected by the corpus callosum. The $\qquad$ is a bundle of nerve tissue that contains over 200 million axons (nerve
fibers that carry electrical impulses from neurons' cell bodies). The Corpus Callosum facilitates communication between the two sides of the brain, the left and right brain $\qquad$ . Each side carries
out different tasks, it is important for each hemisphere to communicate with the other across the corpus
callosum in order to coordinate learning and movement. corpus callosum, right, left, hemispheres, spinal cord,


## Look at the chart: saythe Color not the word Black Blue Green White Green Red Green Aqua Yellow Yellow Pink Tan Red Yellow White

Example produces a Left|Right brain conflict The right brain tries to say the color The left brain tries to read the color http://OfficeSpam.ChattaBlogs.com

## Cerebellum

## Read the information ring; then try:

1. March in Place for 30 seconds. Now, try touch your right hand to the left knee and vice versa during the march. Perform this in an alternating fashion (right arm/ left leg then left arm/ right leg and so on). Now try and do it to a beat.
2. Stand tall with good posture and practice balancing on one leg at a time after 2 minutes have passed close your eyes and recite: the abc's, math facts, etc.


The word Cerebellum means little $\qquad$ .

The cerebellum is at the $\qquad$ of the brain,
$\qquad$ . It's a lot smaller than the
cerebrum at only $1 / 8$ of its size. But it's a very important part of the brain. The $\qquad$
controls balance, movement, and coordination
(how your muscles work together). Because of your
cerebellum, you can stand upright, keep
your $\qquad$ , and move around.


Name the 3 parts of the central nervous system:

Now Label:


Brain Stem

What is the main job of the Cerebrum?

What is the main job of the Cerebellum?

What is the main job of the Brain Stem?


> What is:
> The Circulatory System?

## What We Will Investigate:

. Parts of the Circulatory System
. The Heart as a Pump
. Blood, Blood Cells \& Plasma
. Energy


## Arteries, Capillaries and Veins:

## Read the information ring, then fill in:

Blood leaves the heart in large blood vessels
$\qquad$ . Blood returns in vessels
$\qquad$ . Between the arteries and veins are tiny vessels called $\qquad$ . Arteries
bring $\qquad$ blood from the $\qquad$ to
the cells in the $\qquad$ . Veins carry $\qquad$
blood back to the heart after it has traveled
the $\qquad$ .
body, arteries, deoxygenated, veins, blood, oxygenated, capillaries, heart,


## Arteries, Capillaries and Veins:

## The Children's Heart Institute <br> www.childrenheartinstitute.org

## $H_{e a r}^{\text {The }}+$

This drawing shows how blood flows through the heart.

## Color Me:

The areas of the heart with more oxygen are labeled with an "R". Color these areas RED.

The areas of the heart with less oxygen are labeled with a " $B$ ". Color these areas BLUE.



Arteries, Capillaries and Veins:
Read the information ring and then try:
How the Blood Flows-Veins and Arteries

## Materials: <br> 2 Cups

2 straws: one wide, one narrow.
Putty / Play-Dough
Red Water (Blood)
Make a Hypothesis:
How will these materials be used to create blood flow? Why
are the straws different widths?


1. For each cup, put one straw in to the small hole making sure the straw is facing downwards. (Put the larger diameter straw in the cup with the larger hole. Put the smaller diameter straw in the cup with the smaller hole).
2. Use play dough, clay, or silly putty to seal the hole inside the cup and around the straw so that water cannot leak out of the hole.

Do you think the straws will have the same or different flow rates?


Quickly fill both cups with water. Fill them to the same level.

Observe carefully.

Explain how poor nutrition, like foods high in fat and cholesterol effect your arteries and how does this experiment show that?

## an

## Watch:

## http://kidshealth.org/en/kids/csmovie.html

1. Take a stethoscope and listen to your heart beat record how many beats you hear
$\qquad$ beats in $\qquad$ seconds.
2. Now find your pulse (wrist or neck) and do the same:
$\qquad$ beats in $\qquad$ seconds.


Pick a situation card, perform the act and then chart the changes you find in your heart beat and pulse.


## Watch:

http://kidshealth.org/en/kids/csmovie.html

## Now:

Use the materials to recreate the DOUBLE PUMP
system that is our heart



Your heart is a $\qquad$ that pushes around your whole body. Your
heart is in the middle of your
squeezed between your two $\qquad$ .

Your heart is really ___ pumps in one!
One half pumps blood through your
and the other half pumps blood around your . The blood that pumps through your lungs is $\qquad$ and then it is
pumped through your body from the
atrium.
left, muscle, oxygenated, chest, two, body, lungs, blood, lungs

## Blood Cells, Plasma and Platelets

## Read the information ring and then make blood:

 is $90 \%$ water and contains $\qquad$ , proteinsand hormones; it is a thick, clear/yellowish liquid.

Plasma, is $\mathbf{5 5 \%}$ of our blood volume-add this amount to
the jar.


Next, add your $\qquad$ blood cells, these cells make up

44\% of our blood volume Red Blood Cells, carry
 and $\qquad$ throughout the body.

Now, add your $\qquad$ blood cells, these only make up about 0.05\% our blood volume. The last 0.05\% our blood volume is made up of $\qquad$ . Platelets are responsible for
$\qquad$ if we are cut and or injured.


## What is: The Skeletal Muscle System?

What We Will Investigate:

- Voluntary, Involuntary and Cardiac Muscles
. Bones
. Connect the Two
. Forces and Pulleys in our Hands


Read the information ring and think about the different types of muscles.

Match (draw a line to the matching muscle type):

Skeletal
Smooth
Cardiac
involuntary
heart / involuntary
voluntary


Chewing


1. $\qquad$ 1. $\qquad$
2. 


2.

Jumping
AS 2 ham h
Blinking


Running


Breathing


1. $\qquad$
2. 



## Bones:

(How many bones are in our body? $\qquad$ )

## Look closely at the Beef Femur!

Label the picture choose with the following words:
compact, spongy, marrow


## Bones:

## compact, spongy, marrow

bone is the hardest part of
the bone. The
bone is filled

## with marrow. The bone

 is where red blood cells are made.

Making Connections:
Muscles and Bones in our Bodies:
Pick a partner and one of the Body

## Boards. Find the set of

matching cards and play until you have 4
in a row-then call "body"
**check with the "caller" to make sure you are right!**

## Musculoskeletal Movements:

## Flex and Bend:

## Joints, Ligaments and Tendons

1. Trace your hands and wrists.
(With the help of an adult cut the crease of the thumb to make it slightly opposable)
2. For each finger, in the center, from the tip to the wrist, tape
down straw (do not tape on the joint lines!)

3. Tie 1 piece of string in a loop that threads through the tip of the
finger and the second knuckle. Thread the remaining length of
string through the straw so that the excess string is free at the wrist. Repeat for each finger and thumb.


## Flex and Bend Continued:

## Joints, Ligaments and Tendons


4. Tie a bead to the end of each string.

5. With the help of an adult score the knuckles on the BACK side
of the hand. Bend the joints of each finger and thumb.
6. Pull beads to flex and extend the fingers and thumb.

Play with your hand and Read the information ring, then: Put the bone, joint, ligament and tendon labels on your hand.


