

# THE MAKERSPACE

Cooper Union Summer STEM 2015

Prof. Victoria Bill

Prof. Yosef Skolnick



# **ENERGY KICKS**

Kevin Shah, Nur Nibir, Kahlil Francis, Joshua Boniuk

#### The Problem

The poor battery life of todays mobile devices





#### **Background Information**

- The average person walks 1000 5000 steps a day
- New York City walkers log an average of 7000 8000 steps a day



#### Mission

Charging electronic devices by harvesting kinetic energy



## Inspiration



A Dynamo Torch was used as the model for the Sole Power shoes.



#### **Physics**

- Voltage = Current x Resistance
- Capacitance Formula C=Q/V
- Voltage from phone charger 5V
- Generator gives AC (Alternating Current)
- Phones require DC (Direct Current)



#### **Process**

#### **AutoCAD Inventor**









# 3D Printing









#### Hardware







#### **Future Work**





The next goal is to condense the project so that it fits into the sole of a shoe.



#### Conclusion



Energy Kicks will revolutionize the way people charge their mobile devices in the modern era.

EnergyKicks.Wordpress.com





# THE ANXIETY AVENGERS

Jules Almazar, Ilearys Fernandez, Valerie Ivanov, Ayesha Haniff



Anxiety consists of excessive worry that the person cannot control.



#### Introduction

- 40 million adults are affected (18% of the US population)
- Only 1/3 of the population receives proper treatment





#### Introduction

Anxiety develops from complex factors including:

- Biological
- Environmental
- Life Events



### What is our Goal?





#### Software

- There are 5 different codes
  - Pulse Rate
  - Body Temperature
  - GSR (Galvanic Skin Response)
  - Vibration Motor
  - OLED & RetroWatch



#### Work Completed

- Pulse sensor
- Vibration motor
- Contactless temperature sensor
- OLED displays
- messages







#### Work Completed





# Finished Product









# **Future Work**

- App
- Testing
- Design
- Licensing



#### Conclusion

- Our work will be monitored on our blog:
  - https://anxietywatch.wordpress.com/







# H.E.L.P. DRONE

Lauren Raynor, Yash Balaji, Dylan Kennedy, Paulo Serodio

# Problems with Current Techniques







#### Introduction

 Aim: To create a boat drone that delivers life preservers to drowning individuals





#### **RC** Navigation

- Nordic nRF 24L01+
  - The switches control functions on the boat
  - The alarm goes off when the sensor sends a signal
  - https://youtu.be/S249iorQMiE



## **Boat Design**











#### **Future Plans**

- Improve stability
- Implement a GPS navigation system
- Redesign wristband





# Conclusion www.helpdrone.weebly.com





# **EXO-HAND**

Tess Chan, Daniel Drucker, Max Miloslavsky, James Ng

## Problem







## Solution





# **Background Information**

**Exoskeleton Hand** 

Servo Motor







# **Background Information**

Finger Joints

Flex Sensors







#### Hardware





## **Hardware Demonstration**





#### Software

- 1. Initializes the position of the servo motors
- 2. Checks if any finger is moving
- 3. Exaggerates the finger's movement using the servo motor



#### Conclusion

- A handy helper
- Inexpensive
- Large impact

Check out our work on: myexohand.wordpress.com





# Ideally







#### Introduction

Hobbyists spend significant amounts of money per year on R/Cs and drones that perform on only one terrain.



### **Problem**

\$362.24

The average cost of buying both an R/C drone and an R/C boat





## Solution

- What are we trying to accomplish?
  - Provide dedicated hobbyists with a cost-effective, multiple terrain vehicle.



#### Solution

An amphibious bicopter with the capabilities of both flight and nautical exploration.



## **Background Information**















```
#include <Wire.h>
//#include <SparkFun MMA8452Q.h>
#include <AFMotor.h>
#include <Servo.h>
//#include <SerialDebug.h>
//#define DEBUG true
AF DCMotor motor1(1, MOTOR12 64KHZ);
AF DCMotor motor4(4, MOTOR34_64KHZ);
Servo myservol;
Servo myservo2;
int pos = 0;
//MMA84520 accel:
void setup() {
  Serial.begin(9600);
  while (! Serial);
  Serial.println("Speed S0 to S255");
  Serial.println("Angle A0 to A180");
  //Serial.println("ACCEL Data begin ");
  myservol.attach(9);
  myservo2.attach(10);
  //accel.init(SCALE 8G, ODR 800);
```

```
void printAccels()
  Serial.print(accel.x, 3);
  Serial.print("\t");
  Serial.print(accel.y, 3);
  Serial.print("\t");
  Serial.print(accel.z, 3);
  Serial.print("\t");
void printCalculatedAccels()
  Serial.print(accel.cx, 3);
  Serial.print("\t");
  Serial.print(accel.cy, 3);
  Serial.print("\t");
  Serial.print(accel.cz, 3);
  Serial.print("\t");
void printOrientation()
  byte pl = accel.readPL();
  switch (pl)
  case PORTRAIT U:
    Serial.print("Portrait Up");
   break:
  case PORTRAIT D:
    Serial.print("Portrait Down");
    break:
  case LANDSCAPE R:
    Serial.print("Landscape Right");
   break:
  case LANDSCAPE L:
    Serial.print("Landscape Left");
   break:
  case LOCKOUT:
    Serial.print("Flat");
    break:
```

```
if (Serial.available())
 if(Serial.peek() == 'S') {
 int speed = Serial.parseInt();
 if (speed >= 0 && speed <= 255)
   Serial.println(speed);
   motor1.run(FORWARD);
   motor1.setSpeed(speed);
   motor4.run(FORWARD);
   motor4.setSpeed(speed);
else {
  int pos = Serial.parseInt();
  if (pos >= 0 && pos <= 180)
  myservol.write(pos);
  myservo2.write(pos);
  Serial.println(pos):
```



Brainstorming possible methods of production



Modeling with 3D printer and on paper



Begin coding arduino with redboard



3D printing and testing of parts with other parts





Hardware and software integration



#### **Future Work**

- Integrate camera
- Add ground capabilities



wix.com/sschneller1/seahawk





# **SOULRUNNER6**

Ashley Gonzabay, Aditya Nadkarni, Jon Nelson, Joanne Park, Lindsey Tarpinian





#### Introduction

- Purpose of invention
  - To change the song an individual is listening to according to his or her pace
- Goals
  - To create a wearable independent of a cellular device for an enjoyable workout



## **Background Information**

- C++ syntax in Arduino
- Accelerometer, SD card and Lilypad MP3 libraries
- Wire libraries
  - Data transport
- Vector formula: magnitude of the X,Y,Z coordinates



## Work Completed

- Used accelerometer sensor and tested values
- Wrote algorithm to measure time between each step
- Connected accelerometer to Lilypad MP3
- Wrote code to play songs according to pace using BPM





# **Prototypes**









# **Prototypes**







#### **Future Plans**

- A waterproof casing to prevent damage
- A Bluetooth function that will allow a runner to upload their own playlist
- A smaller version of the prototype



#### Conclusion

- Determined time between steps
- Hooked up accelerometer to a Lilypad MP3 board and got the accelerometer to sense movement and vibrations
- Successfully changed songs based on runner's pace







# **MY AIR**

Tae Kyung Kong (TK), Ian Murray, Nellie Spektor, Callista Ohnemus



#### The Problem

There is more than air out there.



On a Scale of 0 to 500, Beijing's Air Quality Tops 'Crazy Bad' at 755 - NY TIMES (2013)



Smog Filling Up New York City's Atmosphere



#### The Solution

There is more than air out there.

A portable device that is connected to a mobile application.



#### Materials































## The Circuit



## **Android App**







### **Android App**







#### **Android App**







## **Test Data**





#### **Future Plans**

- Smaller
- Cheaper
- ThingSpeak
- Multiple Cases for User's Preference







# THE OMNISHOE

Darren Lin, Michelle Nissan, Shane Ngai, Patrick Schutz

#### Introduction

- Why are we doing this?
  - Alleviates the effect of shoe drag
  - Cheap Alternative to Buying Shoes
  - Very Student-Athlete friendly







# **Background Information**

- Faults in past patents [6]
- Potential customer saving







# The Sole Swap System









# How to Put it Together





### Materials

- Anti-vibration rubber
- Structural card stock base
- Foam insoles for comfort



# Work Completed

- Two swappable soles
- 3L locking system
- Remade for pro-comfort/stability



# **Future Aspirations**

- Make our product fashionable
- Make more specialized soles
- Perfect our sole swap system





## Introduction

**IPS for Commercial Centers** 

- Locating User
- Providing Navigation Instructions



# Background

Google Maps (GPS) iBeacon Received Signal Strength Indication



## Hardware

• ESP8266 Thing with a Lithium Ion Battery







# Hardware (cont)

• 3D Printed Containment Units







#### Software

Triangulation of User



```
public static double calculateDistance(double levelInDb, double freqInMHz) {
    double exp = (27.55 - (20 * Math.log10(freqInMHz)) + Math.abs(levelInDb)) / 20.0;
    return Math.pow(10.0, exp);
}
```



# Software (cont)







# Software (cont)

A\* Search





### Conclusion







# **Background Information**

- 8,758,000 daily MTA passengers
- 954,000 daily NJ Transit passengers
- Over 3 billion annual riders use MTA transportation
- More people take the MTA daily than live in 37 of the 50 states.

**Huge and Growing Available Market!** 



### **Background Information**

- Most people try to catch a nap on their commute
- Missing your stop is extremely frustrating and time consuming



Time is a commodity you can't get enough of!



## **Product Design**

- Armband connected to app via Bluetooth
- App predicts where passenger is
- Built-in timetables determines arrival time
- Band vibrates moments before destination





## Hardware: Wristband













**Continuous** 

Clasp

Modular



# Hardware: Wristband











#### Hardware: Circuit

- 1. Draw schematic
- 2. Build and test circuit
- 3. Minimize size using proto board and smaller components
- 4. Solder final circuit and integrate power source





## The Finished Wristband









### Android App: User Interface

- Select transit system
- Select starting point/destination
- Select departure time
- Set alarm or pin to home screen



4 0° D





## **Android App**

- SQLite database
- Internet-independent
- Bluetooth capability
- Simple interface







### **Future Plans**

- · Real-time data
- Decrease battery size
- Expansion to all MTA Systems
- Circuitry built into individual links





# LightHouse

- Fresh
- Functional
- Fashionable
- Funky



## lighthousetraintech10.wordpress.com

